
T (+98) 23 352 20220
Email: international@du.ac.ir
Damghan University
University Blvd, Damghan, IR
Assistant Professor of Mechanical Engineering
Mechanical Engineering
Shahrood University of Technology, Shahrood, Iran
Mechanical Engineering
Shahrood University of Technology, Shahrood, Iran
Mechanical Engineering
Shahrood University of Technology, Shahrood, Iran
DOI: 10.1016/j.ijheatmasstransfer.2018.12.060
AUTHOR KEYWORDS: Double MRT-LBM; MHD; MWCNT–Fe3O4 nanoparticle; Nanofluid; Porous media
PUBLISHER: Elsevier Ltd
DOI: 10.1016/j.ultsonch.2018.10.032
AUTHOR KEYWORDS: Experimental study; Heat transfer enhancement; Pressure drop; Turbulent; Ultrasonic vibration
INDEX KEYWORDS: Drops; Heat convection; Heat exchangers; Heat transfer coefficients; Inlet flow; Laminar flow; Pressure drop; Reynolds number; Transducers; Tubular steel structures; Turbulent flow; Ultrasonic effects; Ultrasonic transducers; Ultrasonic waves, Accuracy of measurements; Empirical correlations; Experimental study; Heat Transfer enhancement; Laminar flow regimes; Stainless steel tube; Turbulent; Ultrasonic vibration, Thermoacoustics, article; experimental study; flow rate; heat transfer; laminar flow; thermodynamics; turbulent flow; ultrasound; vibration
PUBLISHER: Elsevier B.V.
DOI: 10.1016/j.ijheatmasstransfer.2018.10.072
AUTHOR KEYWORDS: Baffle; KKL correlation; LBM; MHD; Nanofluid; Natural convection
INDEX KEYWORDS: Aspect ratio; Brownian movement; Computational fluid dynamics; Enclosures; Magnetic fields; Magnetohydrodynamics; Nanoparticles; Natural convection; Nusselt number; Thermal conductivity; Volume fraction, Baffle; Effect of magnetic field; Effective thermal conductivity; Heat transfer characteristics; Heat Transfer enhancement; Lattice boltzmann methods (LBM); Nanofluids; Nanoparticle volume fractions, Nanofluidics
PUBLISHER: Elsevier Ltd
DOI: 10.1016/j.ijmecsci.2018.11.019
AUTHOR KEYWORDS: Magnetizable hybrid nanofluid; Natural convection; Porous material; Two variable magnetic sources
INDEX KEYWORDS: Nanofluidics; Natural convection; Nusselt number; Porous materials, Hartmann numbers; Hybrid nanofluid; Industrial processs; Magnetic nanofluid; Magnetic numbers; Magnetic sources; Natural convective heat transfers; Porous enclosure, Magnetism
PUBLISHER: Elsevier Ltd
DOI: 10.1016/j.applthermaleng.2018.09.113
AUTHOR KEYWORDS: Experimental study; Heat transfer enhancement; Nanofluid; Turbulent flow; Ultrasonic vibration
INDEX KEYWORDS: Drops; Heat exchangers; Heat transfer coefficients; Nanoparticles; Pressure drop; Reynolds number; Thermoacoustics; Turbulent flow; Ultrasonic effects; Ultrasonic waves; Volume fraction, Experimental study; Heat Transfer enhancement; Measurement instruments; Nanofluids; Nanoparticle volume fractions; Simultaneous effects; Ultrasonic vibration; Ultrasound vibration, Nanofluidics
PUBLISHER: Elsevier Ltd
DOI: 10.1016/j.jtice.2018.07.026
AUTHOR KEYWORDS: Cold rib; Hot obstacle; LBM; Nanofluid natural convection; U-shaped cavity's aspect ratio
INDEX KEYWORDS: Alumina; Aluminum oxide; Aspect ratio; Computational fluid dynamics; Flow of fluids; Nanoparticles; Natural convection; Nusselt number; Titanium dioxide; Volume fraction, Cavity aspect ratio; Cold rib; Heat Transfer enhancement; Hot obstacle; Lattice boltzmann methods (LBM); Nanofluids; Solid volume fraction; U-shaped, Nanofluidics
PUBLISHER: Taiwan Institute of Chemical Engineers
DOI: 10.1142/S0129183118501085
AUTHOR KEYWORDS: Cavities; Channel; Heat transfer; LBM; Nanofluids
PUBLISHER: World Scientific Publishing Co. Pte Ltd
DOI: 10.1142/S0129183118500791
AUTHOR KEYWORDS: heat transfer; laminar channel flow; lattice Boltzmann method; nanofluid; Sinusoidal obstacle
PUBLISHER: World Scientific Publishing Co. Pte Ltd
DOI: 10.1108/HFF-03-2018-0110
AUTHOR KEYWORDS: Aspect ratio of cavity; Aspect ratio of heat source; C-shaped cavity; Lattice Boltzmann method; Nanofluid; Natural convection heat transfer
INDEX KEYWORDS: Computational fluid dynamics; Kinetic theory; Nanofluidics; Natural convection; Nusselt number, C-shaped; Design/methodology/approach; Flow parameters; Heat sources; Lattice Boltzmann method; Lattice boltzmann methods (LBM); Nanofluids; Thermal convections, Aspect ratio
PUBLISHER: Emerald Group Publishing Ltd.
DOI: 10.1007/s10973-018-7518-y
AUTHOR KEYWORDS: Baffle; Enclosure; LBM; Magnetic field; Nanofluid; Natural convection; U-shaped
INDEX KEYWORDS: Brownian movement; Computational fluid dynamics; Enclosures; Flow of fluids; Kinetic theory; Magnetic field effects; Magnetic fields; Nanoparticles; Natural convection; Numerical methods; Thermal conductivity; Volume fraction, Baffle; Fluid flow and heat transfers; Heat Transfer enhancement; Lattice boltzmann methods (LBM); Nanofluids; Nanoparticle volume fractions; Numerical investigations; U-shaped, Nanofluidics
PUBLISHER: Springer Netherlands
DOI: 10.1016/j.molliq.2018.04.063
AUTHOR KEYWORDS: Buongiorno's model; LTNE model; Migration of nanoparticles; Natural convection; Porous media
INDEX KEYWORDS: Brownian movement; Enclosures; Nanoparticles; Natural convection; Nusselt number; Porous materials; Thermal conductivity of solids; Thermophoresis, Cylindrical heaters; Distribution of temperature; Local thermal equilibrium; Motion parameters; Porous enclosure; Thermal conductivity ratio; Thermal equilibrium models; Thermal parameters, Nanofluidics
PUBLISHER: Elsevier B.V.
DOI: 10.1007/s10973-018-7483-5
AUTHOR KEYWORDS: Apart heating (cooling) sections; Forced convection heat transfer; LBM; Nanofluid; Ribbed channel
INDEX KEYWORDS: Computational fluid dynamics; Cooling; Forced convection; Heating; Iron oxides; Magnetite; Multiwalled carbon nanotubes (MWCN); Nanoparticles; Numerical methods; Nusselt number; Reynolds number; Velocity; Volume fraction; Yarn, Apart heating (cooling) sections; Average heat transfers; Iron oxide nanoparticle; Laminar forced convections; Lattice boltzmann methods (LBM); Nanofluids; Ribbed channels; Two-dimensional (2-D) numerical simulation, Nanofluidics
PUBLISHER: Springer Netherlands
DOI: 10.1142/S0129183118500304
AUTHOR KEYWORDS: circular bar; LBM; reduction of drag forces; square cylinder; vortex shedding control
PUBLISHER: World Scientific Publishing Co. Pte Ltd
DOI: 10.1063/1.5022060
INDEX KEYWORDS: Computational fluid dynamics; Fluidity; Forced convection; Heat convection; Kinetic theory; Nanofluidics; Nanoparticles; Nusselt number; Reynolds number; Volume fraction, Bent channels; Governing equations; Laminar forced convections; Lattice Boltzmann method; Local Nusselt number; Nanofluids; Nanoparticle volume fractions; Solid volume fraction, Heat transfer
PUBLISHER: American Institute of Physics Inc.
DOI: 10.1016/j.cep.2018.01.004
AUTHOR KEYWORDS: Cavity aspect ratio; Heat source aspect ratio; Lattice Boltzmann method; Nanofluid; Natural convection heat transfer; ┴ Shaped cavity
PUBLISHER: Elsevier B.V.
DOI: 10.1016/j.ijheatmasstransfer.2017.10.043
AUTHOR KEYWORDS: Block; Channel; Forced convection; LBM; Nanofluid
INDEX KEYWORDS: Aspect ratio; Computational fluid dynamics; Forced convection; Geometry; Heat convection; Kinetic theory; Nanofluidics; Reynolds number; Two phase flow, Average heat transfers; Block; Channel; Heat transfer augmentation; Horizontal channels; Lattice Boltzmann method; Lattice boltzmann methods (LBM); Nanofluids, Heat transfer
PUBLISHER: Elsevier Ltd
DOI: 10.1016/j.ijheatmasstransfer.2017.10.063
AUTHOR KEYWORDS: Extended surfaces; Laminar forced convection; LBM; Nanofluid; Nusselt number; Parallel-plate channel
INDEX KEYWORDS: Aluminum compounds; Computational fluid dynamics; Copper compounds; Forced convection; Heat transfer; Kinetic theory; Numerical methods; Nusselt number; Reynolds number; Titanium dioxide, Extended surfaces; Heat transfer augmentation; Laminar forced convections; Lattice Boltzmann method; Nanofluids; Parallel-plate channels; Rate of heat transfer; Two-dimensional (2D) lattice, Nanofluidics
PUBLISHER: Elsevier Ltd
DOI: 10.1007/s10973-018-7881-8
AUTHOR KEYWORDS: Hot obstacle; LBM; MWCNT-Fe3O4/water hybrid nanofluids; Natural convection heat transfer; Π-Shaped cavity
INDEX KEYWORDS: Aspect ratio; Computational fluid dynamics; Flow patterns; Iron oxides; Magnetite; Multiwalled carbon nanotubes (MWCN); Nanoparticles; Natural convection; Nusselt number; Volume fraction; Yarn, Fluid flow and heat transfers; Heat transfer mechanism; Hot obstacle; Lattice boltzmann; Lattice Boltzmann method; Nanofluids; Solid volume fraction; Transfer parameters, Nanofluidics
PUBLISHER: Springer Netherlands
Ma, Y., Mohebbi, R., Rashidi, M.M., Yang, Z. MHD forced convection of MWCNT–Fe3O4/water hybrid nanofluid in a partially heated τ-shaped channel using LBM (2018) Journal of Thermal Analysis and Calorimetry, . Article in Press.
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85055260997&doi=10.1007%2fs10973-018-7788-4&partnerID=40&md5=5ae8c39a005971d63789fca4e6375665
DOI: 10.1007/s10973-018-7788-4
AUTHOR KEYWORDS: Forced convection heat transfer; LBM; Magnetic field; Nanofluid; τ-shaped channel
INDEX KEYWORDS: Computational fluid dynamics; Flow of fluids; Forced convection; Heat conduction; Iron oxides; Magnetic fields; Magnetite; Multiwalled carbon nanotubes (MWCN); Nanoparticles; Numerical methods; Nusselt number; Volume fraction; Yarn, Conduction Mechanism; Effect of magnetic field; Fluid flow and heat transfers; Governing equations; Heat transfer characteristics; Iron oxide nanoparticle; Lattice Boltzmann method; Nanofluids, Nanofluidics
PUBLISHER: Springer Netherlands
DOI: 10.1108/HFF-01-2018-0004
AUTHOR KEYWORDS: Hot obstacle; Lattice Boltzmann method; MWCNTs-water nanofluid; Natural convection; U-shaped enclosure
INDEX KEYWORDS: Computational fluid dynamics; Enclosures; Kinetic theory; Multiwalled carbon nanotubes (MWCN); Nanoparticles; Natural convection; Numerical methods; Thermal Engineering; Volume fraction; Yarn, Design/methodology/approach; Engineering applications; Hot obstacle; Lattice Boltzmann method; Nanofluids; Rate of heat transfer; Solid volume fraction; U-shaped, Nanofluidics
PUBLISHER: Emerald Group Publishing Ltd.
DOI: 10.1063/1.4993866
INDEX KEYWORDS: Computational fluid dynamics; Enclosures; Location; Nanofluidics; Natural convection; Nusselt number, Heat sources; Horizontal cavities; Lattice Boltzmann method; Numerical solution; Rayleigh number; Solid volume fraction; Velocity profiles; Vertical cavity, Heat convection
PUBLISHER: American Institute of Physics Inc.
DOI: 10.1142/S0129183117500425
AUTHOR KEYWORDS: forced convection; LBM; parallel-plate channel; rectangular cavities; vortex formation
PUBLISHER: World Scientific Publishing Co. Pte Ltd
DOI: 10.1016/j.jtice.2017.01.006
AUTHOR KEYWORDS: Heating obstacle; L-shaped enclosure; LBM; Nanofluid; Natural convection
INDEX KEYWORDS: Aspect ratio; Enclosures; Heat convection; Heating; Nanofluidics; Nanoparticles; Natural convection; Nusselt number, Internal heating; L-shaped; L-shaped cavity; Nanofluids; Nanoparticle diameter; Transfer phenomenon, Heat transfer
PUBLISHER: Taiwan Institute of Chemical Engineers
DOI: 10.1134/S0021894416010077
AUTHOR KEYWORDS: finite element method; forced convection; lattice Boltzmann method; power-law fluid
INDEX KEYWORDS: Computational fluid dynamics; Cylinders (shapes); Forced convection; Heat transfer; Kinetic theory; Laminar flow; Non Newtonian flow; Non Newtonian liquids; Plates (structural components), Comparative studies; Dilatant fluids; Flow and heat transfer; Lattice Boltzmann method; Non-Newtonian fluids; Power law fluid; Pseudoplastic fluid; Square cylinders, Finite element method
PUBLISHER: Maik Nauka-Interperiodica Publishing
DOI: 10.1016/j.jnnfm.2013.12.002
AUTHOR KEYWORDS: Forced convection; LBM; Power-law fluids; Regular and random arrangements; Square obstacles
INDEX KEYWORDS: Flow and heat transfer; Lattice boltzmann methods (LBM); Lattice Boltzmann simulations; LBM; Power law fluid; Regular and random arrangements; Square obstacles; Temperature profiles, Computational fluid dynamics; Flow of fluids; Forced convection; Nusselt number; Porous materials; Reynolds number, Porosity