
T (+98) 23 352 20220
Email: international@du.ac.ir
Damghan University
University Blvd, Damghan, IR
Associate Professor of Applied mathematics
Applied Mathematics
Iran University of Science and Technology (IUST), Tehran, Iran
Thesis: "Numerical solution of linear and nonlinear inverse heat conduction problems"
Supervisor: Prof. A. Shidfar
Applied Mathematics
Iran University of Science and Technology (IUST), Tehran, Iran
Thesis: "Analytical and numerical methods for solving inverse heat conduction problems"
Supervisor: Prof. A. Shidfar
Applied Mathematics
Khajeh Nasir Toosi University of Technology, Tehran, Iran
Books:
[1] R. Pourgholi, E. Yousefi, R. Azizi, Numerical Analysis (Numerical Computation), ISBN: 978-964-7099-58-5, Azarbad, Tehran, Iran, 2005.
Journals:
DOI: 10.1080/00207160.2017.1417593
AUTHOR KEYWORDS: 35K57; 65M32; 65T60; convergence analysis; Haar wavelets; Ill-posed inverse problems; quasilinearization technique; stability analysis; the Tikhonov regularization method
INDEX KEYWORDS: Boundary conditions; Finite difference method; Linear systems; Nonlinear analysis; Nonlinear equations; Numerical methods; Partial differential equations; Radial basis function networks, Convergence analysis; Haar wavelets; ILL-posed inverse problem; Quasi-linearization; Stability analysis; Tikhonov regularization method, Inverse problems
PUBLISHER: Taylor and Francis Ltd.
DOI: 10.1007/s00366-017-0554-6
AUTHOR KEYWORDS: Convergence analysis; Cubic B-spline; Finite element method; Ill-posed problems; Inverse problems; Noisy data; Radial basis functions method; Stability analysis; Tikhonov regularization method
INDEX KEYWORDS: Differential equations; Finite element method; Functions; Interpolation; Nonlinear equations; Polynomials; Problem solving; Radial basis function networks, Convergence analysis; Cubic B -spline; Ill posed problem; Noisy data; Radial basis functions; Stability analysis; Tikhonov regularization method, Inverse problems
PUBLISHER: Springer London
DOI: 10.1080/00036811.2016.1272102
AUTHOR KEYWORDS: convergence analysis; cubic B-spline; Ill-posed inverse problems; noisy data; stability analysis; Tikhonov regularization method
PUBLISHER: Taylor and Francis Ltd.
DOI: 10.1504/IJCSM.2018.09650
AUTHOR KEYWORDS: Fully implicit; Ill-posed problem; Inverse problems; Least square; Noisy data; Tikhonov regularisation method; Unknown source
INDEX KEYWORDS: Finite difference method; Least squares approximations; Numerical methods, Fully implicit; Ill posed problem; Least Square; Noisy data; Regularisation; Unknown source, Inverse problems
PUBLISHER: Inderscience Enterprises Ltd.
DOI: 10.1080/00207160.2016.1190010
AUTHOR KEYWORDS: error estimation; legendre wavelet basis; tau method; Weakly singular volterra integral equations
INDEX KEYWORDS: Error analysis; Numerical methods, A-stable; Approximate solution; Legendre waveletss; Matrix operations; Operational tau method; Tau method; Volterra integral equations; Weakly singular, Integral equations
PUBLISHER: Taylor and Francis Ltd.
DOI: 10.1007/s00366-017-0512-3
AUTHOR KEYWORDS: Convergence analysis; Ill-posed problems; Inverse problems; Noisy data; Quintic B-spline collocation; Tikhonov regularization method
INDEX KEYWORDS: Boundary conditions; Finite element method; Interpolation; Numerical methods; Problem solving; Ship propellers, Convergence analysis; Ill posed problem; Noisy data; Quintic B-splines; Tikhonov regularization method, Inverse problems
PUBLISHER: Springer London
DOI: 10.1002/num.22073
AUTHOR KEYWORDS: convergence analysis; cubic B-spline basis functions; Ill-posed inverse problems; noisy data; stability analysis; tikhonov regularization method
INDEX KEYWORDS: Boundary conditions; Finite element method; Interpolation; Nonlinear equations; Numerical methods; Partial differential equations; Ship propellers, Convergence analysis; Cubic B -spline; ILL-posed inverse problem; Noisy data; Stability analysis; Tikhonov regularization method, Inverse problems
PUBLISHER: John Wiley and Sons Inc.
DOI: 10.1504/IJMMNO.2015.071869
AUTHOR KEYWORDS: ADM; Adomian decomposition method; Inverse problem; Least square; Non-local boundary; Tikhonov regularisation method
PUBLISHER: Inderscience Enterprises Ltd.
DOI: 10.1504/IJCSE.2015.070994
AUTHOR KEYWORDS: Fundamental solution method; Inverse heat conduction problem; Stability; The L-curve method; Tikhonov regularisation method
INDEX KEYWORDS: Convergence of numerical methods; Heat conduction; Problem solving, Existence and uniqueness; Fundamental solution method; Inverse heat conduction problem; L-curve methods; Numerical approaches; Parabolic Equations; Parabolic problems; Regularisation, Inverse problems
PUBLISHER: Inderscience Enterprises Ltd.
DOI: 10.1504/IJCSM.2014.059378
AUTHOR KEYWORDS: Existence; Finite difference method; Inverse semilinear wave problem; Polynomial function; Stability; Uniqueness
DOI: 10.1007/s40306-014-0050-7
AUTHOR KEYWORDS: ADMB-KdV equation; Cauchy problem; Sobolev spaces
DOI: 10.1007/s12591-013-0174-6
AUTHOR KEYWORDS: Rosenau-RLW equation; Solitary waves; Stability
DOI: 10.1016/j.apm.2013.10.019
AUTHOR KEYWORDS: Genetic algorithm; IHCP; Multi-core parallelization algorithm; Sequential algorithm; The least squares method
INDEX KEYWORDS: Clocks; Genetic algorithms; Numerical methods, IHCP; Inverse heat conduction problem; Least squares methods; Numerical experiments; Parallel genetic algorithms; Parallelization algorithms; Sequential algorithm; Sequential genetic algorithms, Least squares approximations
PUBLISHER: Elsevier Inc.
DOI: 10.1007/s11565-013-0178-8
AUTHOR KEYWORDS: ADMB-KdV equation; Anisotropic Sobolev spaces; Cauchy problem
DOI: 10.1142/S0219691313500343 DOI: 10.1142/S0219876213500096
AUTHOR KEYWORDS: error analysis; Haar basis method; Ill-posed inverse problems; Legendre wavelet method; noisy data
INDEX KEYWORDS: Comparative studies; Exponential rates; Fisher's equation; Haar basis method; ILL-posed inverse problem; Legendre wavelet methods; Noisy data; Tikhonov regularization method, Differential equations; Error analysis, Inverse problems
AUTHOR KEYWORDS: Existence and uniqueness; stability; SVD method; the Tikhonov regularization method
INDEX KEYWORDS: Efficient numerical method; Existence and uniqueness; Initial and boundary conditions; Inverse wave problems; Singular value decomposition method; SVD method; Tikhonov regularization; Tikhonov regularization method, Convergence of numerical methods; Numerical methods; Singular value decomposition, Inverse problems
DOI: 10.1007/s40314-013-0005-y
AUTHOR KEYWORDS: Existence; Inverse initial-boundary-value problem; The L-curve method; Tikhonov regularization method; Uniqueness
DOI: 10.1007/s12190-012-0592-6
AUTHOR KEYWORDS: Consistency; Convergence; Existence; Finite difference method; Inverse heat conduction problem; Least-square method; Stability; Tikhonov regularization method; Uniqueness
INDEX KEYWORDS: Consistency; Convergence; Existence; Inverse heat conduction problem; Least square methods; Tikhonov regularization method; Uniqueness, Convergence of numerical methods; Finite difference method; Linear systems; Singular value decomposition; Two dimensional, Least squares approximations
DOI: 10.1504/IJMMNO.2013.059206
AUTHOR KEYWORDS: Genetic algorithm; IHHCP; Inverse hyperbolic heat; Inverse hyperbolic heat conduction problem; Multi-core parallelisation; The least squares method
PUBLISHER: Inderscience Enterprises Ltd.
DOI: 10.1007/s10910-012-0036-4 DOI: 10.1016/j.na.2010.12.001
AUTHOR KEYWORDS: Haar basis method; Ill-posed inverse problems; Noisy data; Tikhonov regularization method
PUBLISHER: Springer International Publishing
AUTHOR KEYWORDS: Inverse problem; Nonlinear diffusion problem; Square porous medium
INDEX KEYWORDS: Class A; Existence and uniqueness; Nonlinear diffusion problems; Nonlinear inverse diffusion; Porous medium; Square porous medium, Diffusion; Inverse problems, Porous materials
DOI: 10.1080/17415977.2010.518287
AUTHOR KEYWORDS: Finite difference method; Inverse heat conduction problem; Least-squares method; Regularization method; Stability
INDEX KEYWORDS: Ill-conditioned; Inverse heat conduction problem; Least squares methods; Linear system of equations; Numerical approaches; Numerical approximations; Parabolic problems; Regularization methods; Tikhonov regularization method; Unknown coefficients, Differentiation (calculus); Dynamic loads; Finite difference method; Heat conduction; Linear systems; Ordinary differential equations, Numerical methods
DOI: 10.1016/j.apm.2009.10.022
AUTHOR KEYWORDS: Basis function; Inverse heat conduction problem; Tikhonov regularization method
INDEX KEYWORDS: Auxiliary problem; Basis functions; Heat conduction equations; Ill-conditioned; Initial conditions; Inverse heat conduction problem; Linear system of equations; Numerical algorithms; Numerical approaches; Numerical approximations; Numerical techniques; Tikhonov regularization method, Dynamic loads; Linear systems, Heat conduction
DOI: 10.1016/j.cnsns.2008.08.002
AUTHOR KEYWORDS: Existence; Instability; Inverse heat conduction problem; Uniqueness
INDEX KEYWORDS: Fourier transforms; Temperature measurement, Cauchy problems; Existence; Instability; Inverse heat conduction problem; Single sensors; Uniqueness, Heat conduction
DOI: 10.3844/jmssp.2008.98.101
AUTHOR KEYWORDS: Finite difference method; Inverse Heat Conduction Problem; Least-squares method; Ordinary Differential Equation
PUBLISHER: Science Publications
DOI: 10.3844/jmssp.2008.60.63
AUTHOR KEYWORDS: Finite difference method; Inverse heat conduction problem; Least-squares method; Ordinary differential equation
PUBLISHER: Science Publications